Accumulation and Headloss Calculations ### Gilbert Zigler Alion Science and Technology ITS Operations November 2003 1 ## Overview - Inputs to Head Loss Evaluation - Head Loss Calculation Methodology - Uncertainties - Summary 2 ATTACHMENT 3 ## **Total Head Loss** Total Head Loss = Clean Strainer Head Loss + Debris Bed Head Loss ## Debris Bed Head Loss - Fibrous Debris Bed Head Loss NUREG/CR-6224 Head Loss Correlation - RMI Debris Bed Head Loss NUREG/CR-6808 RMI Head Loss Correlation 5 ## Inputs - Sump Screen Geometry - Thermal-Hydraulic Conditions - Debris Accumulation ## Sump Screen Submergence - Fully Submerged Screens - Ambient Pressure Present on One Side of the Screen - Flow Driver is the Pump Suction - Partially Submerged Screens - Ambient Pressure Present on Both Sides of the Screen - Flow Driver is the Difference in Fluid Elevation Between the Sides of the Screen ### **Success Criteria** - Fully Submerged Screen Clean + Debris Bed < NPSH_{available} - Partially Submerged Screen Clean + Debris Bed < ½ Screen Submergence Height 9 ## Thermal-Hydraulic Conditions - Recirculation Pool Water Level - ECCS Flow Rate - Recirculation Pool Water Temperature - Recirculation Pool Water Chemistry - ECCS Recirculation Mission Duration ### **Debris Accumulation** - Containment Flow Restrictions - Sump Screen Assumptions - Flat Plates - Uniform Debris Deposition 11 ## **Debris Bed Characteristics** - Insulation Debris Characteristics - Macroscopic Density As Fabricated - Microscopic Density Material - Fiber Diameter - Failed Coatings Characteristics - In ZOI - Outside ZOI - Miscellaneous Debris Characteristics | Debris Name | Insulation Material Description | As-Fabricated
Density (lbs/ft*) | Material
Density
(lbm/ft ³) | Characteristic Size | | |---|---|------------------------------------|---|------------------------|--| | | | | | hш | inch | | PCI's
NUKON®
Blankets | Removable / reusable blankers with
woven glass fiber cloth covering fibrous
glass insulating board (referred to by the
NRC as a "LDFG") | 2.41.7 | 1597 | 7.0 fiber
diameter | 28E-05 ^{3,3} | | Fiberglass -
preformed pipe | Knaupf fibrous glass wool preformed into cylindrical shapes | 4.0 +/- 10% ² or . | 159² | 7.5 liber
diameter | 30E-05 ² | | Fiberglass -
preformed pipe | Owens-Corning fibrous glass wool preformed into cylindrical shapes | 3.5 to 5.5 ⁷ | 159 ⁷ | 8.25 fiber
diameter | 33E-037 | | Fiberglass —
pipe and tank
wrap | Fibrous glass wool wrap, using
perpendicularly oriented fibers, adhered
to an All Service Jacketing (ASI) facing
(made by Knaupf, Owens-Coming, &
others) | 3.0 +/- 10% | 1592 | 6.75 fiber
diameter | 27E-05² | | Transco's
Thermal
Wrap [®]
Blankets | Removable / reusable blankets with
woven glass fiber cloth covering <u>fibrous</u>
glass insulant) | 2.42.14 | 1592 | 5.5 fiber
diameter | 22E-05 ² | | Knaupf | Knaupf ET Panel (LDFG similar to
Nukon) | 2.4 | 159 | 5.5 fiber
diameter | 22E-05 | | Temp-Mat [®]
and Insulbatte [®] | Glass fibers needled into a felt mat:
these are trade names of insulation
products made by JPS Corp. | \$1.8 ⁴ | 1624 . | 9.0 fiber
diameter | 36E-05
max.
average ¹ | | Cellular Glass | Foamglase is the trade name for this
cellular glass product made by
Pittsburgh Corning Corporation | 6.1 to 9.8 (mean
value of 7.5) ¹⁵ | 15615 | NA | 0.05 to 0.08
pore size ¹⁵ :
grain size
unknown | |-----------------------|--|--|-----------------|---|--| | Kaowool ^a | Needled insulation mat made from ceramic fibers; Kaowool is a trade name for a family of ceramic fiber products made by Thermal Ceramics, Inc. | 3 to 12* | 160 to
16114 | 2.7 to 3.0 ¹⁶
fiber
diameter | 10.8 to
12.0E-05 | | Cerawool ^o | Needled insulation mat made from
cramic fibers: Cerawool is a trade
name for a family of ceramic fiber
products made by Thermal Ceramics.
Inc. | 3 to 12 ^a | 356 to
358** | 3.2 to 3.5*
fiber
diameter | 12.8 to
14.0E-05 | | Mineral Wool | Generic name for families of products
made by Rock Wool Mfg., Roxul,
Fibrex, 11G, and others | 4, 6, 8, and 10 ⁵
pcf are standard | 90 ⁸ | 5 to 7º fiber
diameter | 20 to 28
E-05 | | MimK [₹] | Trade name of microporous insulation products made by Thermal Ceramics. Inc. from furned silica, glass fibers, and quartz fibers | 8 to 16 pcf ¹⁷ | NA | < 0.1 ^H | < 4E-06 | | Calcium
Silicate | Manufactured by IIG in three locations (2 use diatomaceous earth. 1 uses expanded perlite) | 14.5" | 14410 | 40 μm mean
particle size
(2 to 100 μm
range) ¹⁰ | 1.60E-03 | | Microtherm | Microporous Insulation | 5 to 12 pcf | NA | <0.2 | <4.0E-06 | | Asbestos | Structural fiber used in Cal-Sil type ins. | 7 10 10 | 153 | 1108 | 4 to 32E-05 | ## Fiber 15 ## **Head Loss Calculations** - NUREG/CR-6224 Correlation - NRC SER RMI Correlation - Mixed Fiber + RMI Debris Beds - Microporous Materials ### NUREG/CR-6224 Correlation $$\Delta H = \Lambda [3.5 \text{ S}_{v}^{2} \alpha_{m}^{1.5} (1+57 \alpha_{m}^{3}) \mu \text{ U} + 0.66 \text{ S}_{v} \alpha_{m}/(1-\alpha_{m}) \rho \text{ U}^{2}] \Delta L_{m}$$ - Account for Compression - Average Surface to Volume Ratio 17 # NUREG/CR-6224 Correlation - Semi-Theoretical Correlation - Allows for use of other materials and conditions beyond those tested - Flat Plate Geometry - Uniform Debris Accumulation - Applicable to both submerged and partially submerged screens - Alternate Geometry Screens ### Thin Bed Effect - A Fiber Debris Bed ~ 1/8 in. thick filters particulates efficiently - For High Particulate Loads a Thin Fiber Bed Could Trap Particulates on its Surface to Form a Layer of "Mud" - Particulate Layer has Low Porosity High Head Losses 19 ### Typical Fiber + Particulate Head Loss Estimates ## **RMI** Correlation NUREG/CR-6808 RMI Correlation $\Delta H = 0.108 U^2 A_{foil}/A$ Bounds the Available Data hence Independent of RMI Debris Size & Type 21 # Typical RMI Debris ### Mixed RMI + Fiber Debris Beds Mixed RMI and Fibrous Debris Beds: $$\Delta H_{(total)} = \Delta H_{RMI} + \Delta H_{fiber + particulate}$$ Potentially overly-conservative for high RMI to fiber ratios. 23 ### Mixed RMI + Fiber # Microporous Debris - Limited Experimental Data on Microporous Debris - Upcoming Reports and NUREGs of NRC Experiments Reported Earlier This Year 25 ## Calcium Silicate ### Mixtures of Microporous & Fibrous Debris The NUREG/CR-6224 head loss model conservatively estimates head losses for microporous-to-fiber ratios (by weight) *less* than 0.2 - Microporous insulation modeled as spherical particulate with a nominal diameter of 5 μm and a microscopic density of 140 lb/ft³ - Visual observations of the debris bed showed microporous insulation dispersed throughout the fibers as individual amorphous particulates 20 ### Mixtures of Microporous & Fibrous Debris Significantly high head losses *not predictable* by the NUREG/CR-6224 model were observed for microporous-to-fiber ratios (by weight) *more* than 0.2 the microporous constituents in mixed debris beds of microporous-to-fiber ratios (by weight) greater than 0.2 undergo a change in the morphology of the microporous debris materials - the amorphous particulate agglomerates to form a film that evolves into an impervious plaque. ### SEM of High Microporous to Fiber Ratio Debris Bed 33 ## Summary Experimentally Based Bounding Correlations to Determine Head Loss Calculations: - NUREG/CR-6224 Correlation for Fibrous Beds - NUREG/CR-6808 RMI Correlation